The Problem of Dividing Balls into Boxes
Written on July 23, 2023
Views : Loading...

The problem of dividing balls into boxes
This document discusses various variants of the problem of dividing n balls into m boxes. Markdown styles and MathJax have been added to improve readability and to display mathematical equations correctly.
Variants of the Problem
-
Boxes can be empty:
- Balls and boxes are identical.
- Balls are identical, boxes are distinct.
- Balls are distinct, and boxes are identical.
- Balls and boxes are distinct.
-
Boxes cannot be empty:
- Balls and boxes are identical.
- Balls are identical, boxes are distinct.
- Balls are distinct, and boxes are identical.
- Balls and boxes are distinct.
Variant 1: Boxes cannot be empty
1. Both boxes and balls are identical.
In this case, there are n identical balls and m identical boxes. The goal is to partition the n balls into m parts, where each part (box) must contain at least one ball.
For this, we can use a partition function which can be calculated using the formula:
$$ P(n,r) = P(n-r,r-1) $$
where $ P(n,n) = 1 $ and $ P(n, 0) = 0 $.
This can be calculated using dynamic programming and memoization.
2. Balls are identical, and boxes are distinct.
Given n identical balls and m distinct boxes, this problem can be modeled as a linear equation:
$$ x_1 + x_2 + x_3 + \ldots + x_m = n $$
where each $ x \geq 1 $.
The number of solutions is given by:
$$ \text{ans} = \binom{n-1}{m-1} $$
3. Balls are distinct, but boxes are identical.
There are n distinct balls and m identical boxes. The solution is given by Stirling number of the Second kind, $ S(n,r) $:
$$ S(n,r) = \frac{1}{r!} \left( \binom{r}{0} \cdot n^r - \binom{r}{1} \cdot (r-1)^n + \binom{r}{2} \cdot (r-2)^n - \ldots + (-1)^{r-1} \cdot 1^n \right) $$
4. Both balls and boxes are distinct.
This problem is the same as the number of onto functions from a set containing n elements to a set containing r elements. It is given by:
$$ r^n - \left( \binom{n}{1} \cdot (r-1)^n - \binom{r}{2} \cdot (r-2)^n + \ldots + (-1)^{r-1} \cdot 1^n \right) $$
Variant 2: Boxes can be empty
1. Both boxes and balls are distinct.
There are n distinct balls and m identical boxes. This is the same as the number of elements that can be assigned to a set containing n elements to a set containing m elements.
$$ \text{ans} = m^n $$
2. Balls are identical, and boxes are distinct.
Given n identical balls and m distinct boxes, this problem can be modeled as a linear equation:
$$ x_1 + x_2 + x_3 + \ldots + x_m = n $$
where each $ x \geq 0 $.
The number of solutions is given by:
$$ \text{ans} = \binom{n+m-1}{m-1} $$
3. Balls are distinct, but boxes are identical.
There are n distinct balls and m identical boxes. The solution is given by Bell number $ B_n $:
$$ B_n = \sum_{k=0}^{r} S(n,k) $$
where $ S $ is the Stirling number of the Second kind.
4. Both balls and boxes are Identical.
In this case, there are n identical balls and m identical boxes. The goal is to partition the n balls into m parts, where some parts can be empty.
For this, we can use a partition function which can be calculated using the formula:
$$ P(n,r) = P(n-1,r-1) + P(n-r,r) $$
where $ P(n,n) = 1 $ and $ P(n, 0) = 0 $.
This can be calculated using dynamic programming and memoization.
Share this blog
Related Posts
25-11-2024
In the realm of graph theory, understanding the connectivity of a network is crucial for numerous ap...
24-11-2024
Dive deep into the Z Algorithm, a fundamental technique in string processing. This blog elucidates t...

28-07-2024
In this comprehensive guide, you'll master essential SQL queries to ace your database-related interv...
04-11-2023
Explore the most efficient Sorting Algorithms for Competitive Programming and Interviews. Learn abou...

22-07-2023
Enhance your dynamic programming skills with our comprehensive collection of Linear DP problems from...
19-07-2023
Become a Tree Algorithms expert with our comprehensive solutions for CSES and various problem sets. ...

17-07-2023
Explore efficient solutions and master essential algorithms for CSES Graph problems in the CSES Prob...
15-07-2023
Explore efficient solutions to the Sorting and Searching section in the CSES Problem Set. Master ess...
12-07-2023
Explore efficient solutions to dynamic programming problems from the CSES problem set and other repu...